Concentration fluctuations in a mesoscopic oscillating chemical reaction system.
نویسندگان
چکیده
Under sustained pumping, kinetics of macroscopic nonlinear biochemical reaction systems far from equilibrium either can be in a stationary steady state or can execute sustained oscillations about a fixed mean. For a system of two dynamic species X and Y, the concentrations n(x) and n(y) will be constant or will repetitively trace a closed loop in the (n(x), n(y)) phase plane, respectively. We study a mesoscopic system with n(x) and n(y) very small; hence the occurrence of random fluctuations modifies the deterministic behavior and the law of mass action is replaced by a stochastic model. We show that n(x) and n(y) execute cyclic random walks in the (n(x), n(y)) plane whether or not the deterministic kinetics for the corresponding macroscopic system represents a steady or an oscillating state. Probability distributions and correlation functions for n(x)(t) and n(y)(t) show quantitative but not qualitative differences between states that would appear as either oscillating or steady in the corresponding macroscopic systems. A diffusion-like equation for probability P(n(x), n(y), t) is obtained for the two-dimensional Brownian motion in the (n(x), n(y)) phase plane. In the limit of large n(x), n(y), the deterministic nonlinear kinetics derived from mass action is recovered. The nature of large fluctuations in an oscillating nonequilibrium system and the conceptual difference between "thermal stochasticity" and "temporal complexity" are clarified by this analysis. This result is relevant to fluorescence correlation spectroscopy and metabolic reaction networks.
منابع مشابه
Tutorial Review: Simulation of Oscillating Chemical Reactions Using Microsoft Excel Macros
Oscillating reactions are one of the most interesting topics in chemistry and analytical chemistry. Fluctuations in concentrations of one the reacting species (usually a reaction intermediate) create an oscillating chemical reaction. In oscillating systems, the reaction is far from thermodynamic equilibrium. In these systems, at least one autocatalytic step is required. Developing an instinctiv...
متن کاملMotif analysis for small-number effects in chemical reaction dynamics.
The number of molecules involved in a cell or subcellular structure is sometimes rather small. In this situation, ordinary macroscopic-level fluctuations can be overwhelmed by non-negligible large fluctuations, which results in drastic changes in chemical-reaction dynamics and statistics compared to those observed under a macroscopic system (i.e., with a large number of molecules). In order to ...
متن کاملClassical versus stochastic kinetics modeling of biochemical reaction systems.
We study fundamental relationships between classical and stochastic chemical kinetics for general biochemical systems with elementary reactions. Analytical and numerical investigations show that intrinsic fluctuations may qualitatively and quantitatively affect both transient and stationary system behavior. Thus, we provide a theoretical understanding of the role that intrinsic fluctuations may...
متن کاملConcentration fluctuations in non-isothermal reaction-diffusion systems. II. The nonlinear case.
In this paper, we consider a simple reaction-diffusion system, namely, a binary fluid mixture with an association-dissociation reaction between two species. We study fluctuations at hydrodynamic spatiotemporal scales when this mixture is driven out of equilibrium by the presence of a temperature gradient, while still being far away from any chemical instability. This study extends the analysis ...
متن کاملAn effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions.
Chemical master equations provide a mathematical description of stochastic reaction kinetics in well-mixed conditions. They are a valid description over length scales that are larger than the reactive mean free path and thus describe kinetics in compartments of mesoscopic and macroscopic dimensions. The trajectories of the stochastic chemical processes described by the master equation can be en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 16 شماره
صفحات -
تاریخ انتشار 2002